read, write, order and compare numbers up to 10000000 and determine the value of each digit	round any whole number to a required degree of accuracy	use negative numbers in context, and caloulate intervals across zero	solve number problems and pradical problems that involve all of the above	multiply multi-dig it numbers up to 4 dig its by atwo-digit whole number using the formal written method of long multiplication	divide numbers up to 4 digits by a two-digit whole number usirg the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by roundirg, as appropriate for the context	divide numbers up to 4 digits by a two-dig it number using the formal written method of short division where appropriate, interpreting remainders according to the context	perform mental calculations, including with mixed operations and large numbers	identify common factors, common multiples and prime numbers
use their knowledge of the order of operations to carry out calculations involving the four operations	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve problems involving addition, subtraction, multiplication and division	use estimation to chedk answers to calculations and determine, in the context of a problem, an appropriate degree of acouracy.	use common factors to simplify fractions; use common multiples to express frations in the same denomination		add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions	multiply simple pairs of properfractions, writing the answer n its simplest form [for example, $1 / 4 \times 1 / 2=1 / 8$]	divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6$]
associate a fraction with division and caloulate decimal fraction equivalents [for example, 0.375] for a simple fration [for example, $3 / 8$]	identify the value of each digit in numbersgiven to three deamal places and multiply and divide numbers by 10,100 and 1000 giving answers up to 3 decimal places	multiply one-dig it numbers with up to two decimal places by whole numbers	50		use written division methods in cases where the answer has up to two decimal places \qquad	solve problems which require answers to be rounded to specified degrees of accuracy	recall and use equivalences between simple fradions, decimals and percentages including in different contexts.	solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and use percentages for comparison	solve problems involving similar shapes where the scale factor Is known or can be found	solve problems Involving unequal sharing and grouping using knowledge of fractions and multiples				use simple formulae	generate and describe linear number sequences	express missing number problems algebraically
find pairs of numbers that satisfy number sentences involving two unknowns	enumerate possibilities of combinations of two variables	solve problems involving the cal oulation and conversion of units of measure, using decimal notation up to three decimal places where appropriate	use, read, write and convert between standard units, converting measurements of length, mass, volume and time fron smaller unit of measure to a larger unit, and vice versa, using deamal notation to decimal up to 3	convert between miles and kilometres	recog nise that shapes with the same areas can have different perimeters and vice versa	recognise when it is possible to use the formulae for area and volume of shapes	caloulate the area of parallelograms and triangles	calculate, estimate and compare volume of cubes and auboids using standar units, induding cubic oentimetres (mm^{3} and cubicmetres (r and extending to other units [eg , and km^{3}]
draw 2-D shapes using given dimensions and angles	ecognise, describe and build simple 3-D shapes including making nets	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons	illustrate and name parts of arcle, induding radius, diameter and ciroumference and know that the diameter is twice the radius	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.	describe positions on the full coordinate grid (all four quadrants)	draw and translate simple shapes on the coordinate plane, and refled them in the axes	interpret and construct pie charts and line graphs and use these to solve problems	caloulate and interpret the mean as an average

1 a) Write these numbers using numerals:
i) Two million, six hundred and twenty thousand, two hundred and sixty:
ii) Two million, six hundred and two thousand, two hundred and six:
iii) Two million, six hundred thousand, two hundred and sixteen:
b) Write these numbers in words:
i) 2343817 :
\qquad
\qquad
\qquad
ii) 4300817 : \qquad
\qquad
iii) 3300 007: \qquad
\qquad
a) the nearest 10:
b) the nearest 100 :
...........................
d) the nearest 10000 :
e) the nearest 100 000:
\qquad
c) the nearest 1000:
\qquad
f) the nearest million:

3 a) $15^{\circ} \mathrm{C}$ warmer than $-2^{\circ} \mathrm{C}$ is ${ }^{\circ} \mathrm{C}$
b) $12^{\circ} \mathrm{C}$ colder than $10^{\circ} \mathrm{C}$ is \qquad
c) $15^{\circ} \mathrm{C}$ colder than $3^{\circ} \mathrm{C}$ is \qquad
d) $9^{\circ} \mathrm{C}$ warmer than $-12^{\circ} \mathrm{C}$ is \qquad ${ }^{\circ} \mathrm{C}$
e) $\quad 12^{\circ} \mathrm{C}$ colder than $-2^{\circ} \mathrm{C}$ is \qquad ${ }^{\circ} \mathrm{C}$
f) $20^{\circ} \mathrm{C}$ warmer than $-8^{\circ} \mathrm{C}$ is \qquad ${ }^{\circ} \mathrm{C}$

4 The temperature $-20^{\circ} \mathrm{C}$ is rounded to the nearest 10
a) What is the warmest possible temperature? \qquad .${ }^{\circ} \mathrm{C}$
b) What is the coldest possible temperature? \qquad ${ }^{\circ} \mathrm{C}$

5 Calculate
a) 765×43
b) 2345×67

6 Calculate:
a) $2477 \div 15$ to one decimal place
b) $943 \div 12$, expressing any remainders as a fraction

\qquad

7 There are 1245 pupils at a school.

A classroom has enough desks for 32 pupils.

What is the smallest number of classrooms needed?

8 Calculate:
a) 60×40
b) $\mathbf{1 2 0 \times 7 0 0}$
c) $282 \div 3$
d) $32000 \div 800$

9 a) Find the highest common factor of 40 and 24.
b) Find the smallest common multiple of 8 and 20 .
c) Find a prime number between 90 and 100.

10 Calculate:
a) $2 \times 5+4$
b) $2+5 \times 4$
c) $60 \div 6-2$
d) $60-6 \div 2$

11 Two numbers have a difference of 420. One of the numbers is 1747.
a) What is the other number?
b) Is this the only answer? Explain your answer

12 Find the value of Δ :

$$
12809+4396=\Delta \div 15
$$

13 Karen is given the calculation $121879-42398$.

She estimates that the answer is 60000.

Do you agree with Karen? Explain your answer.

14 Simplify fully:
a) $\frac{5}{10}=$
b) $\frac{3}{12}=$
c) $\frac{6}{18}=$
d) $\frac{12}{16}=$
e) $\frac{15}{40}=$

15 Place the fractions in order from smallest to largest:

$$
\frac{4}{10} \quad \frac{1}{2} \quad \frac{1}{5} \quad \frac{7}{20} \quad \frac{8}{8} \quad \frac{5}{4}
$$

(F2, 3 marks)

16 Calculate:
a) $\frac{1}{2}+\frac{1}{8}=$
b) $\frac{2}{3}+\frac{1}{4}=$
c) $\frac{7}{10}-\frac{1}{4}=$
d) $4 \frac{3}{4}-\frac{1}{8}=$

17 Calculate, writing the answer in its simplest form:
a) $\frac{1}{4} \times \frac{1}{2}=$
b) $\frac{2}{3} \times \frac{1}{4}=$
c) $\frac{3}{10} \times \frac{2}{5}=$

18 Calculate:
a) $\frac{1}{3} \div 2=$
b) $\frac{1}{2} \div 3=$
c) $\frac{6}{10} \div 3=$

19 Two pizzas are shared equally between 3 people.

What fraction does each person receive?

20 Find the value of Δ in each of these statements:
a) $0.23 \times 100=\Delta$
e) $\Delta \div 10=4.7$
\qquad $\Delta=$ \qquad
b) $\Delta \times 10=1.4$
f) $56 \div 100=\Delta$

$$
\Delta=\text {.......................... }
$$

c) $\Delta \times 1000=123$
g) $\Delta \div 1000=4.5$

$$
\Delta=
$$

\qquad
$\Delta=$ \qquad
$\Delta=$ \qquad
h) $4.2 \times \Delta=420$
d) $5.5 \times 1000=\Delta$
\qquad

$$
\Delta=
$$

$$
\Delta=
$$

\qquad

21 Calculate:
a) $0.2 \times 4=$
b) $1.5 \times 5=$
c) $2.55 \times 6=$
(F8, 5 marks)

22 Calculate $2477 \div 21$ to two decimal places.

(F9, 4 marks)
$23 £ 550$ is shared equally between 6 friends. How much does each person receive?

24 In the same exam, Matt scored 42% and Dave scored $\frac{2}{5}$.

Who got the highest score?

Explain your answer.
(F11, 2 marks)

25 John and Jean share $£ 60$.

John receives 3 times as much as Jean.

How much do John and Jean get?

John: \ddagger \qquad Jean: $£$ \qquad
(RP1, 3 marks)

26 Find 15% of 300 .

27 These two rectangles are similar.

Find the length of the smaller rectangle.

29 The perimeter of a rectangle can be calculated using the formula

$$
\mathrm{P}=2(a+b)
$$

where a is the width of the rectangle and b is the length of the rectangle.

Using the formula, calculate the perimeter of a rectangle with $a=10 \mathrm{~cm}$ and $b=15 \mathrm{~cm}$.

$$
\mathrm{P}=
$$

\qquad

30 Find the next two terms of these sequences:
a) $2,5,8,11$, \qquad
\qquad c) $1,2,4,8$,
b) $20,17,14,11$, \qquad d) $2,5,9,14$, \qquad

31 Which of the following algebraic statements correctly describes the following problem?

'four times a number and add 5 to get the answer 17'

Tick the one that does.

$32 \quad A$ and B are whole numbers.

$$
A+B=25
$$

A is a one-digit number.
B is a two-digit number.

Find all the possible values for A and B.
(AL4, 3 marks)
$33 x$ and y are variables.
$x+y=4$
Find 5 different possibilities for x and y.

\boldsymbol{X}	\boldsymbol{y}

(AL5, 2 marks)

34 Josh is trying to run 10 kilometres in one week.

Here are the distances he runs on the first three days:

Day 1: 1.6 kilometres
Day 2: 850 metres
Day 3: 2.12 kilometres

How much further does he have to run?
(M1, 3 marks)

35 Are these statements true (T) or false (F)?
a) $2.54 \mathrm{~km}=254 \mathrm{~m}$ \qquad d) $2542 \mathrm{~g}=2.542 \mathrm{~kg}$
b) $254 \mathrm{~cm}=2.54 \mathrm{~m}$ \qquad e) 2.543 litres $=254.3 \mathrm{ml}$
c) $4320 \mathrm{~mm}=43.2 \mathrm{~cm}$
.........
f) $1200 \mathrm{~cm}=1.2 \mathrm{~m}$
\qquad
\qquad
\qquad
(M2, 6 marks)

36 Complete the statements:
a) 5 miles is approximately \qquad km
b) 40 kilometres is approximately \qquad miles

37 Is it true (T) or false (F) that a rectangle with the same area can have a different perimeter?

Explain your answer.

38 Calculate the area of this shape:

\qquad

39 Find the area of these shapes
a)

b)

\qquad cm^{2}
c)

d)

\qquad cm^{2}
\qquad

40 Which has the greatest volume?

Tick the one that does

Explain your answer.
(M7, 3 marks)

41 Here is a sketch of a triangle:

Draw an accurate full size diagram of the triangle.

(GPS1, 3 marks)

42 Here are the nets of four 3-D shapes. Name the 3-D shape in each case.
a)

c)

d)

43 Find the value of the missing angle in each diagram
a)

b)

c)

d)

\qquad . \qquad
(GPS3, 8 marks)

44 a) Label the parts of the circle.

b) Complete the statement:

The of a circle $=2 \times$ the of a circle
(GPS4, 4 marks)

45 Find the size of the angle labelled angle in these diagrams
a)

b)

c)

\qquad .${ }^{\circ}$ \qquad . \qquad
.

46 Find the co-ordinates of all the points.
A(........)
E(........ ,)
B(........ ,)
F(........ ,)
C(........
D(........ ,)
G(........ ,)

(GPD1, 7 marks)

47 Look at the triangle on the grid
a) Ken translates the triangle 3 square to the left and four squares down.

Find the new co-ordinates of vertex P.
b) Judy reflects the triangle in the x-axis.

Find the new co-ordinates of vertex P.

(GPD2, 2 marks)

48 a) Amanda is drawing a pie chart for this data.

Calculate the angle for each category.

Eye colour	Frequency	Angle
Brown	12	
Blue	3	
Green	6	
Mixed	3	

b) 32 pupils were asked to name their favourite flavor of crisp.

The pie chart represents the results.

Estimate the number of pupils who selected
 salt and vinegar.

49 a) Calculate the mean of: 1, 5, 3, 5, 6
b) Find 4 different numbers with a mean of 6 .
\qquad

NOT GOT IT YET?

Key topics I need to work on:

